
TAU Performance System
Sameer Shende

University of Oregon
sameer@cs.uoregon.edu

ACTS Workshop, LBL, Aug 24, 2007

TAU Performance SystemACTS Workshop 2007 2

Acknowledgements
� Dr. Allen D. Malony, Professor
� Alan Morris, Senior software engineer
� Wyatt Spear, Software engineer
� Scott Biersdorff, Software engineer
� Kevin Huck, Ph.D. student
� Aroon Nataraj, Ph.D. student
� Brad Davidson, Systems administrator

TAU Performance SystemACTS Workshop 2007 3

Outline
� Overview of features
� Instrumentation
� Measurement
� Analysis tools

� Parallel profile analysis (ParaProf)
� Performance data management (PerfDMF)
� Performance data mining (PerfExplorer)

� Application examples

TAU Performance SystemACTS Workshop 2007 4

Performance Evaluation
� Profiling

� Presents summary statistics of performance metrics
� number of times a routine was invoked
� exclusive, inclusive time/hpm counts spent executing it
� number of instrumented child routines invoked, etc.
� structure of invocations (calltrees/callgraphs)
� memory, message communication sizes also tracked

� Tracing
� Presents when and where events took place along a global

timeline
� timestamped log of events
� message communication events (sends/receives) are tracked

� shows when and where messages were sent
� large volume of performance data generated leads to more

perturbation in the program

TAU Performance SystemACTS Workshop 2007 5

Definitions – Profiling
� Profiling

� Recording of summary information during execution
� inclusive, exclusive time, # calls, hardware statistics, …

� Reflects performance behavior of program entities
� functions, loops, basic blocks
�user-defined “semantic” entities

� Very good for low-cost performance assessment
� Helps to expose performance bottlenecks and hotspots
� Implemented through

� sampling: periodic OS interrupts or hardware counter traps
� instrumentation: direct insertion of measurement code

TAU Performance SystemACTS Workshop 2007 6

Definitions – Tracing
� Tracing

� Recording of information about significant points (events)
during program execution
� entering/exiting code region (function, loop, block, …)
� thread/process interactions (e.g., send/receive message)

� Save information in event record
� timestamp
�CPU identifier, thread identifier
�Event type and event-specific information

� Event trace is a time-sequenced stream of event records
� Can be used to reconstruct dynamic program behavior
� Typically requires code instrumentation

TAU Performance SystemACTS Workshop 2007 7

Event Tracing: Instrumentation, Monitor, Trace

1 master

2 worker

3 ...

void worker {
trace(ENTER, 2);
...
recv(A, tag, buf);
trace(RECV, A);
...
trace(EXIT, 2);

}

void master {
trace(ENTER, 1);
...
trace(SEND, B);
send(B, tag, buf);
...
trace(EXIT, 1);

}
MONITOR 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

CPU A:

CPU B:

Event definition

timestamp

TAU Performance SystemACTS Workshop 2007 8

Event Tracing: “Timeline” Visualization

1 master
2 worker
3 ...

58 A ENTER 1
60 B ENTER 2
62 A SEND B
64 A EXIT 1
68 B RECV A

...

69 B EXIT 2

...

main
master
worker

58 60 62 64 66 68 70

B

A

TAU Performance SystemACTS Workshop 2007 9

Steps of Performance Evaluation
� Collect basic routine-level timing profile to determine

where most time is being spent
� Collect routine-level hardware counter data to determine

types of performance problems
� Collect callpath profiles to determine sequence of events

causing performance problems
� Conduct finer-grained profiling and/or tracing to

pinpoint performance bottlenecks
� Loop-level profiling with hardware counters
� Tracing of communication operations

TAU Performance SystemACTS Workshop 2007 10

TAU Performance System
� Tuning and Analysis Utilities (15+ year project effort)
� Performance system framework for HPC systems

� Integrated, scalable, flexible, and parallel
� Targets a general complex system computation model

� Entities: nodes / contexts / threads
� Multi-level: system / software / parallelism
� Measurement and analysis abstraction

� Integrated toolkit for performance problem solving
� Instrumentation, measurement, analysis, and visualization
� Portable performance profiling and tracing facility
� Performance data management and data mining

� Partners: LLNL, ANL, LANL, Research Center Jülich

TAU Performance SystemACTS Workshop 2007 11

TAU Parallel Performance System Goals
� Portable (open source) parallel performance system

� Computer system architectures and operating systems
� Different programming languages and compilers

� Multi-level, multi-language performance instrumentation
� Flexible and configurable performance measurement
� Support for multiple parallel programming paradigms

� Multi-threading, message passing, mixed-mode, hybrid,
object oriented (generic), component-based

� Support for performance mapping
� Integration of leading performance technology
� Scalable (very large) parallel performance analysis

TAU Performance SystemACTS Workshop 2007 12

TAU Performance System Architecture

TAU Performance SystemACTS Workshop 2007 13

TAU Performance System Architecture

TAU Performance SystemACTS Workshop 2007 14

Program Database Toolkit (PDT)

Application
/ Library

C / C++
parser

Fortran parser
F77/90/95

C / C++
IL analyzer

Fortran
IL analyzer

Program
Database

Files

IL IL

DUCTAPE

PDBhtml

SILOON

CHASM

TAU_instr

Program
documentation

Application
component glue

C++ / F90/95
interoperability

Automatic source
instrumentation

TAU Performance SystemACTS Workshop 2007 15

Building Bridges to Other Tools: TAU

TAU Performance SystemACTS Workshop 2007 16

TAU Instrumentation Approach
� Support for standard program events

� Routines, classes and templates
� Statement-level blocks

� Support for user-defined events
� Begin/End events (“user-defined timers”)
� Atomic events (e.g., size of memory allocated/freed)
� Selection of event statistics
� Support for hardware performance counters (PAPI)

� Support definition of “semantic” entities for mapping
� Support for event groups (aggregation, selection)
� Instrumentation optimization

� Eliminate instrumentation in lightweight routines

TAU Performance SystemACTS Workshop 2007 17

PAPI

� Performance Application Programming Interface
� The purpose of the PAPI project is to design,

standardize and implement a portable and efficient
API to access the hardware performance monitor
counters found on most modern microprocessors.

� Parallel Tools Consortium project started in 1998
� Developed by University of Tennessee, Knoxville
� http://icl.cs.utk.edu/papi/

TAU Performance SystemACTS Workshop 2007 18

TAU Instrumentation Mechanisms
� Source code

� Manual (TAU API, TAU component API)
� Automatic (robust)

�C, C++, F77/90/95 (Program Database Toolkit (PDT))
�OpenMP (directive rewriting (Opari), POMP2 spec)

� Object code
� Pre-instrumented libraries (e.g., MPI using PMPI)
� Statically-linked and dynamically-linked

� Executable code
� Dynamic instrumentation (pre-execution) (DynInstAPI)
� Virtual machine instrumentation (e.g., Java using JVMPI)

� TAU_COMPILER to automate instrumentation process

TAU Performance SystemACTS Workshop 2007 19

Using TAU: A brief Introduction
� To instrument source code using PDT

� Choose an appropriate TAU stub makefile in <arch>/lib:
% setenv TAU_MAKEFILE

/opt/apps/tau/tau_latest/x86_64/lib/Makefile.tau-icpc-mpi-pdt
% setenv TAU_OPTIONS ‘-optVerbose …’ (see tau_compiler.sh)
And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C

compilers:
% mpif90 foo.f90
changes to
% tau_f90.sh foo.f90

� Execute application and analyze performance data:
% pprof (for text based profile display)
% paraprof (for GUI)

TAU Performance SystemACTS Workshop 2007 20

TAU Measurement System Configuration
� configure [OPTIONS]

{-c++=<CC>, -cc=<cc>} Specify C++ and C compilers
-pdt=<dir> Specify location of PDT
-opari=<dir> Specify location of Opari OpenMP tool
-papi=<dir> Specify location of PAPI
-vampirtrace=<dir> Specify location of VampirTrace
-mpi[inc/lib]=<dir> Specify MPI library instrumentation
-dyninst=<dir> Specify location of DynInst Package
-shmem[inc/lib]=<dir> Specify PSHMEM library instrumentation
-python[inc/lib]=<dir> Specify Python instrumentation
-tag=<name> Specify a unique configuration name
-epilog=<dir> Specify location of EPILOG
-slog2 Build SLOG2/Jumpshot tracing package
-otf=<dir> Specify location of OTF trace package
-arch=<architecture> Specify architecture explicitly

(bgl, xt3,ibm64,ibm64linux…)
{-pthread, -sproc} Use pthread or SGI sproc threads
-openmp Use OpenMP threads
-jdk=<dir> Specify Java instrumentation (JDK)
-fortran=[vendor] Specify Fortran compiler

TAU Performance SystemACTS Workshop 2007 21

TAU Measurement System Configuration
� configure [OPTIONS]

-TRACE Generate binary TAU traces
-PROFILE (default) Generate profiles (summary)
-PROFILECALLPATH Generate call path profiles
-PROFILEPHASE Generate phase based profiles
-PROFILEPARAM Generate parameter based profiles
-PROFILEMEMORY Track heap memory for each routine
-PROFILEHEADROOM Track memory headroom to grow
-MULTIPLECOUNTERS Use hardware counters + time
-COMPENSATE Compensate timer overhead
-CPUTIME Use usertime+system time
-PAPIWALLCLOCK Use PAPI’s wallclock time
-PAPIVIRTUAL Use PAPI’s process virtual time
-SGITIMERS Use fast IRIX timers
-LINUXTIMERS Use fast x86 Linux timers

TAU Performance SystemACTS Workshop 2007 22

Performance Evaluation Alternatives

Flat profile

Depthlimit
profile

Parameter
profile

Callpath/
callgraph profile

Phase
profile

Trace

Volume of performance data
Each alternative has:
- one metric/counter
- multiple counters

TAU Performance SystemACTS Workshop 2007 23

TAU Measurement Configuration – Examples

� configure -pdt=<dir> -c++=pathCC -cc=pathcc -fortran=pathscale
-mpiinc=/usr/common/usg/mvapich/pathscale/mvapich-0.9.5-mlx1.0.3/include
-mpilib=/usr/common/usg/mvapich/pathscale/mvapich-0.9.5-mlx1.0.3/lib -
mpilibrary='-lmpich
-L/usr/local/ibgd/driver/infinihost/lib64 -lvapi’
� on Jacquard with PDT, MPI for x86_64 and Pathscale compilers

� ./configure -papi=/opt/apps/papi-3.5.0 -MULTIPLECOUNTERS [other options];
make clean install
� Use PAPI counters (one or more) with C/C++/F90 automatic instrumentation for

Linux. Also instrument the MPI library.
� Typically configure multiple measurement libraries

� .all_configs, .last_config files contain all and last configuration
� tau_validate --html --build x86_64 >& results.html
� ./upgradetau /path/to/old/tau-2.16

� Each configuration creates a unique <arch>/lib/Makefile.tau<options>
stub makefile. It corresponds to the configuration options used. e.g.,
� /opt/apps/tau/tau_latest/x86_64/lib/Makefile.tau-mpi-pdt-pgi
� /opt/apps/tau/tau_latest/x86_64/lib/Makefile.tau-multiplecounters-icpc-mpi-papi-

pdt

TAU Performance SystemACTS Workshop 2007 24

TAU Measurement Configuration – Examples

% cd /opt/apps/tau/tau_latest/x86_64/lib; ls Makefile.*
Makefile.tau-icpc-pdt
Makefile.tau-icpc-mpi-pdt
Makefile.tau-icpc-callpath-mpi-pdt
Makefile.tau-icpc-mpi-pdt-trace
Makefile.tau-icpc-mpi-compensate-pdt
Makefile.tau-multiplecounters-icpc-mpi-papi-pdt
Makefile.tau-multiplecounters-icpc-mpi-papi-pdt-trace
Makefile.tau-icpc-mpi-papi-pdt-epilog-trace
Makefile.tau-icpc-pdt…
� For an MPI+F90 application, you may want to start with:
Makefile.tau-icpc-mpi-pdt-pgi

� Supports MPI instrumentation & PDT for automatic source instrumentation for Intel
compilers

TAU Performance SystemACTS Workshop 2007 25

Configuration Parameters in Stub Makefiles
� Each TAU stub Makefile resides in <tau>/<arch>/lib directory
� Variables:

� TAU_CXX Specify the C++ compiler used by TAU
� TAU_CC, TAU_F90 Specify the C, F90 compilers
� TAU_DEFS Defines used by TAU. Add to CFLAGS
� TAU_LDFLAGS Linker options. Add to LDFLAGS
� TAU_INCLUDE Header files include path. Add to CFLAGS
� TAU_LIBS Statically linked TAU library. Add to LIBS
� TAU_SHLIBS Dynamically linked TAU library
� TAU_MPI_LIBS TAU’s MPI wrapper library for C/C++
� TAU_MPI_FLIBS TAU’s MPI wrapper library for F90
� TAU_FORTRANLIBS Must be linked in with C++ linker for F90
� TAU_CXXLIBS Must be linked in with F90 linker
� TAU_INCLUDE_MEMORY Use TAU’s malloc/free wrapper lib
� TAU_DISABLE TAU’s dummy F90 stub library
� TAU_COMPILER Instrument using tau_compiler.sh script

� Each stub makefile encapsulates the parameters that TAU was configured with
� It represents a specific instance of the TAU libraries. TAU scripts use stub makefiles to

identify what performance measurements are to be performed.

TAU Performance SystemACTS Workshop 2007 26

Automatic Instrumentation

� We now provide compiler wrapper scripts
� Simply replace mpxlf90 with tau_f90.sh
� Automatically instruments Fortran source code,

links with TAU MPI Wrapper libraries.
� Use tau_cc.sh and tau_cxx.sh for C/C++

Before
CXX = mpCC

F90 = mpxlf90_r

CFLAGS =

LIBS = -lm

OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)

$(CXX) $(LDFLAGS) $(OBJS) -o $@
$(LIBS)

.cpp.o:

$(CC) $(CFLAGS) -c $<

After
CXX = tau_cxx.sh

F90 = tau_f90.sh

CFLAGS =

LIBS = -lm

OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)

$(CXX) $(LDFLAGS) $(OBJS) -o $@
$(LIBS)

.cpp.o:

$(CC) $(CFLAGS) -c $<

TAU Performance SystemACTS Workshop 2007 27

TAU_COMPILER Commandline Options

� See <taudir>/<arch>/bin/tau_compiler.sh –help

� Compilation:
% mpxlf90 -c foo.f90

Changes to
% f95parse foo.f90 $(OPT1)
% tau_instrumentor foo.pdb foo.f90 –o foo.inst.f90 $(OPT2)
% mpxlf90 –c foo.f90 $(OPT3)

� Linking:
% mpxlf90 foo.o bar.o –o app

Changes to
% mpxlf90 foo.o bar.o –o app $(OPT4)

� Where options OPT[1-4] default values may be overridden by the user:
F90 = $(TAU_COMPILER) $(MYOPTIONS) mpxlf90

TAU Performance SystemACTS Workshop 2007 28

TAU_COMPILER Options
� Optional parameters for $(TAU_COMPILER): [tau_compiler.sh –help]

-optVerbose Turn on verbose debugging messages
-optDetectMemoryLeaks Turn on debugging memory allocations/

de-allocations to track leaks
-optPdtGnuFortranParser Use gfparse (GNU) instead of f95parse

(Cleanscape) for parsing Fortran source code
-optKeepFiles Does not remove intermediate .pdb and .inst.* files
-optPreProcess Preprocess Fortran sources before instrumentation
-optTauSelectFile="" Specify selective instrumentation file for tau_instrumentor
-optLinking="" Options passed to the linker. Typically

$(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)
-optCompile="" Options passed to the compiler. Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse)
-optPdtF95Reset="" Reset options for Fortran parser in PDT (f95parse/gfparse)
-optPdtCOpts="" Options for C parser in PDT (cparse). Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtCxxOpts="" Options for C++ parser in PDT (cxxparse). Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
...

TAU Performance SystemACTS Workshop 2007 29

Overriding Default Options:TAU_COMPILER

% cat Makefile

F90 = tau_f90.sh

OBJS = f1.o f2.o f3.o …

LIBS = -Lappdir –lapplib1 –lapplib2 …

app: $(OBJS)

$(F90) $(OBJS) –o app $(LIBS)

.f90.o:

$(F90) –c $<

% setenv TAU_OPTIONS ‘-optVerbose -optTauSelectFile=select.tau
-optKeepFiles’

% setenv TAU_MAKEFILE <taudir>/x86_64/lib/Makefile.tau-mpi-pdt

TAU Performance SystemACTS Workshop 2007 30

Optimization of Program Instrumentation

� Need to eliminate instrumentation in frequently executing lightweight routines
� Throttling of events at runtime:

% setenv TAU_THROTTLE 1

Turns off instrumentation in routines that execute over 100000 times
(TAU_THROTTLE_NUMCALLS) and take less than 10 microseconds of
inclusive time per call (TAU_THROTTLE_PERCALL)

� Selective instrumentation file to filter events
% tau_instrumentor [options] –f <file> OR

% setenv TAU_OPTIONS ’-optTauSelectFile=tau.txt’

� Compensation of local instrumentation overhead
% configure -COMPENSATE

TAU Performance SystemACTS Workshop 2007 31

Selective Instrumentation File
� Specify a list of routines to exclude or include (case sensitive)
� # is a wildcard in a routine name. It cannot appear in the first column.

BEGIN_EXCLUDE_LIST

Foo

Bar

D#EMM

END_EXCLUDE_LIST

� Specify a list of routines to include for instrumentation
BEGIN_INCLUDE_LIST

int main(int, char **)

F1

F3

END_EXCLUDE_LIST

� Specify either an include list or an exclude list!

TAU Performance SystemACTS Workshop 2007 32

Selective Instrumentation File

� Optionally specify a list of files to exclude or include (case sensitive)
� * and ? may be used as wildcard characters in a file name

BEGIN_FILE_EXCLUDE_LIST

f*.f90

Foo?.cpp

END_FILE_EXCLUDE_LIST

� Specify a list of routines to include for instrumentation
BEGIN_FILE_INCLUDE_LIST

main.cpp

foo.f90

END_FILE_INCLUDE_LIST

TAU Performance SystemACTS Workshop 2007 33

Selective Instrumentation File

� User instrumentation commands are placed in INSTRUMENT section
� ? and * used as wildcard characters for file name, # for routine name
� \ as escape character for quotes
� Routine entry/exit, arbitrary code insertion
� Outer-loop level instrumentation

BEGIN_INSTRUMENT_SECTION

loops file=“foo.f90” routine=“matrix#”

memory file=“foo.f90” routine=“#”

io routine=“MATRIX”

file=“foo.f90” line = 123 code = " print *, \" In foo\""

exit routine = “int f1()” code = "cout <<\“Out f1\"<<endl;"

END_INSTRUMENT_SECTION

TAU Performance SystemACTS Workshop 2007 34

Using TAU
� Install TAU

% ./configure [options]; make clean install
� Replace the names of your compiler with tau_f90.sh, tau_cxx.sh and tau_cc.sh

in your makefiles
� Set environment variables

� Choose the measurement option and compile your code:
� setenv TAU_MAKEFILE $TAU/Makefile.tau-icpc-mpi-pdt
� setenv TAU_OPTIONS ‘-optVerbose -optKeepFiles -optPreProcess’
� setenv TAU_THROTTLE 1

� At runtime to keep instrumentation overhead in check
� At runtime, if more than one metric is measured (-multiplecounters):

� setenv COUNTER1 GET_TIME_OF_DAY
� setenv COUNTER2 PAPI_FP_INS
� setenv COUNTER3 PAPI_NATIVE_<native_name>

� Use papi_native_avail, papi_avail, and papi_event_chooser to select these
preset and native event names

� Build the application, run it, analyze performance data

TAU Performance SystemACTS Workshop 2007 35

Compiling Fortran Codes with TAU: Tips
� If your Fortran code uses free format in .f files (fixed is default for .f), you may use:

% setenv TAU_OPTIONS ‘-optPdtF95Opts=“-R free” -optVerbose ’

� If it uses several module files, you may switch from the default Cleanscape Inc. parser
in PDT to the GNU gfortran parser to generate PDB files:
% setenv TAU_OPTIONS ‘-optPdtGnuFortranParser -optVerbose’

� If your Fortran code uses C preprocessor directives (#include, #ifdef, #endif):
% setenv TAU_OPTIONS ‘-optPreProcess -optVerbose -optDetectMemoryLeaks’

� To use an instrumentation specification file:
% setenv TAU_OPTIONS ‘-optTauSelectFile=mycmd.tau -optVerbose -optPreProcess’
% cat mycmd.tau
BEGIN_INSTRUMENT_SECTION
memory file=“foo.f90” routine=“#”
instruments all allocate/deallocate statements in all routines in foo.f90
loops file=“*” routine=“#”
io file=“abc.f90” routine=“FOO”
END_INSTRUMENT_SECTION

TAU Performance SystemACTS Workshop 2007 36

Instrumentation of OpenMP Constructs
�� OOpenMP PPragma AAnd RRegion IInstrumentor [UTK, FZJ]
� Source-to-Source translator to insert POMP calls

around OpenMP constructs and API functions
� Done: Supports

� Fortran77 and Fortran90, OpenMP 2.0
� C and C++, OpenMP 1.0
� POMP Extensions
� EPILOG and TAU POMP implementations
� Preserves source code information (#line line file)

� tau_ompcheck
� Balances OpenMP constructs (DO/END DO) and detects errors
� Invoked by tau_compiler.sh prior to invoking Opari

� KOJAK Project website http://icl.cs.utk.edu/kojak

TAU Performance SystemACTS Workshop 2007 37

OpenMP API Instrumentation
� Transform

� omp_#_lock() →→→→ pomp_#_lock()

� omp_#_nest_lock()→→→→ pomp_#_nest_lock()

[# = init | destroy | set | unset | test]

� POMP version
� Calls omp version internally
� Can do extra stuff before and after call

TAU Performance SystemACTS Workshop 2007 38

Example: !$OMP PARALLEL DO Instrumentation

!$OMP PARALLEL DO clauses...

do loop

!$OMP END PARALLEL DO

!$OMP PARALLEL other-clauses...

!$OMP DO schedule-clauses, ordered-clauses,
lastprivate-clauses

do loop
!$OMP END DO

!$OMP END PARALLEL DO

NOWAIT

!$OMP BARRIER

call pomp_parallel_fork(d)

call pomp_parallel_begin(d)

call pomp_parallel_end(d)

call pomp_parallel_join(d)

call pomp_do_enter(d)

call pomp_do_exit(d)

call pomp_barrier_enter(d)

call pomp_barrier_exit(d)

TAU Performance SystemACTS Workshop 2007 39

Opari Instrumentation: Example
� OpenMP directive instrumentation
pomp_for_enter(&omp_rd_2);

#line 252 "stommel.c"

#pragma omp for schedule(static) reduction(+: diff) private(j)
firstprivate (a1,a2,a3,a4,a5) nowait

for(i=i1;i<=i2;i++) {

for(j=j1;j<=j2;j++){

new_psi[i][j]=a1*psi[i+1][j] + a2*psi[i-1][j] + a3*psi[i][j+1]

+ a4*psi[i][j-1] - a5*the_for[i][j];

diff=diff+fabs(new_psi[i][j]-psi[i][j]);

}

}

pomp_barrier_enter(&omp_rd_2);

#pragma omp barrier

pomp_barrier_exit(&omp_rd_2);

pomp_for_exit(&omp_rd_2);

TAU Performance SystemACTS Workshop 2007 40

Using Opari with TAU

Step I: Configure KOJAK/opari [Download from http://www.fz-juelich.de/zam/kojak/]
% cd kojak-2.1.1; cp mf/Makefile.defs.ibm Makefile.defs;

edit Makefile

% make

Builds opari
Step II: Configure TAU with Opari (used here with MPI and PDT)
% configure –opari=/usr/contrib/TAU/kojak-2.1.1/opari

-mpiinc=/usr/lpp/ppe.poe/include
–mpilib=/usr/lpp/ppe.poe/lib
–pdt=/usr/contrib/TAU/pdtoolkit-3.9

% make clean; make install

% setenv TAU_MAKEFILE /tau/<arch>/lib/Makefile.tau-…opari-…

% tau_cxx.sh -c foo.cpp

% tau_cxx.sh -c bar.f90

% tau_cxx.sh *.o -o app

TAU Performance SystemACTS Workshop 2007 41

User-level abstractions
problem domain

source code

source code

object code libraries

instrumentation

instrumentation

executable

runtime image

compiler

linker

OS

VM

instrumentation

instrumentation

instrumentation

instrumentation

instrumentation

instrumentationperformance
data run

preprocessor

Multi-Level Instrumentation and Mapping
� Multiple interfaces
� Information sharing

� Between interfaces
� Event selection

� Within/between
levels

� Mapping
� Associate

performance data
with high-level
semantic abstractions

TAU Performance SystemACTS Workshop 2007 42

TAU Measurement Approach
� Portable and scalable parallel profiling solution

� Multiple profiling types and options
� Event selection and control (enabling/disabling, throttling)
� Online profile access and sampling
� Online performance profile overhead compensation

� Portable and scalable parallel tracing solution
� Trace translation to SLOG2, OTF, EPILOG, and Paraver
� Trace streams (OTF) and hierarchical trace merging

� Robust timing and hardware performance support
� Multiple counters (hardware, user-defined, system)
� Performance measurement for CCA component software

TAU Performance SystemACTS Workshop 2007 43

TAU Measurement Mechanisms
� Parallel profiling

� Function-level, block-level, statement-level
� Supports user-defined events and mapping events
� TAU parallel profile stored (dumped) during execution
� Support for flat, callgraph/callpath, phase profiling
� Support for memory profiling (headroom, malloc/leaks)
� Support for tracking I/O (wrappers, Fortran

instrumentation of read/write/print calls)
� Tracing

� All profile-level events
� Inter-process communication events
� Inclusion of multiple counter data in traced events

TAU Performance SystemACTS Workshop 2007 44

Types of Parallel Performance Profiling
� Flat profiles

� Metric (e.g., time) spent in an event (callgraph nodes)
� Exclusive/inclusive, # of calls, child calls

� Callpath profiles (Calldepth profiles)
� Time spent along a calling path (edges in callgraph)
� “main=> f1 => f2 => MPI_Send” (event name)
� TAU_CALLPATH_DEPTH environment variable

� Phase profiles
� Flat profiles under a phase (nested phases are allowed)
� Default “main” phase
� Supports static or dynamic (per-iteration) phases

TAU Performance SystemACTS Workshop 2007 45

-MULTIPLECOUNTERS Configuration Option

� Instead of one metric, profile or trace with more than one metric
� Set environment variables COUNTER[1-25] to specify the metric

� % setenv COUNTER1 GET_TIME_OF_DAY
� % setenv COUNTER2 PAPI_L2_DCM
� % setenv COUNTER3 PAPI_FP_OPS
� % setenv COUNTER4 PAPI_NATIVE_<native_event>
� % setenv COUNTER5 P_WALL_CLOCK_TIME …

� When used with –TRACE option, the first counter must be
GET_TIME_OF_DAY

� % setenv COUNTER1 GET_TIME_OF_DAY
� Provides a globally synchronized real time clock for tracing

� -multiplecounters appears in the name of the stub Makefile
� Often used with –papi=<dir> to measure hardware performance counters

and time
� papi_native_avail and papi_avail are two useful tools

TAU Performance SystemACTS Workshop 2007 46

-PROFILECALLPATH Configuration Option
� Generates profiles that show the calling order (edges & nodes in callgraph)

� A=>B=>C shows the time spent in C when it was called by B and B was
called by A

� Control the depth of callpath using TAU_CALLPATH_DEPTH env.
Variable

� -callpath in the name of the stub Makefile name

TAU Performance SystemACTS Workshop 2007 47

-PROFILECALLPATH Configuration Option
� Generates program callgraph

TAU Performance SystemACTS Workshop 2007 48

Profile Measurement – Three Flavors
� Flat profiles

� Time (or counts) spent in each routine (nodes in callgraph).
� Exclusive/inclusive time, no. of calls, child calls
� E.g,: MPI_Send, foo, …

� Callpath Profiles
� Flat profiles, plus
� Sequence of actions that led to poor performance
� Time spent along a calling path (edges in callgraph)
� E.g., “main=> f1 => f2 => MPI_Send” shows the time spent in MPI_Send

when called by f2, when f2 is called by f1, when it is called by main. Depth of
this callpath = 4 (TAU_CALLPATH_DEPTH environment variable)

� Phase based profiles
� Flat profiles, plus
� Flat profiles under a phase (nested phases are allowed)
� Default “main” phase has all phases and routines invoked outside phases
� Supports static or dynamic (per-iteration) phases
� E.g., “IO => MPI_Send” is time spent in MPI_Send in IO phase

TAU Performance SystemACTS Workshop 2007 49

-DEPTHLIMIT Configuration Option

� Allows users to enable instrumentation at runtime based on the
depth of a calling routine on a callstack.
� Disables instrumentation in all routines a certain depth away from

the root in a callgraph
� TAU_DEPTH_LIMIT environment variable specifies depth

% setenv TAU_DEPTH_LIMIT 1
enables instrumentation in only “main”
% setenv TAU_DEPTH_LIMIT 2
enables instrumentation in main and routines that are directly called by

main

� Stub makefile has -depthlimit in its name:
setenv TAU_MAKEFILE <taudir>/<arch>/lib/Makefile.tau-icpc-mpi-

depthlimit-pdt

TAU Performance SystemACTS Workshop 2007 50

-COMPENSATE Configuration Option

� Specifies online compensation of performance
perturbation

� TAU computes its timer overhead and subtracts it from
the profiles

� Works well with time or instructions based metrics
� Does not work with level 1/2 data cache misses

TAU Performance SystemACTS Workshop 2007 51

-TRACE Configuration Option

� Generates event-trace logs, rather than summary profiles
� Traces show when and where an event occurred in terms of location and the

process that executed it
� Traces from multiple processes are merged:

% tau_treemerge.pl
� generates tau.trc and tau.edf as merged trace and event definition file

� TAU traces can be converted to Vampir’s OTF/VTF3, Jumpshot SLOG2,
Paraver trace formats:
% tau2otf tau.trc tau.edf app.otf
% tau2vtf tau.trc tau.edf app.vpt.gz
% tau2slog2 tau.trc tau.edf -o app.slog2
% tau_convert -paraver tau.trc tau.edf app.prv

� Stub Makefile has -trace in its name
% setenv TAU_MAKEFILE <taudir>/<arch>/lib/

Makefile.tau-icpc-mpi-pdt-trace

TAU Performance SystemACTS Workshop 2007 52

-PROFILEPARAM Configuration Option

� Idea: partition performance data for individual functions
based on runtime parameters

� Enable by configuring with –PROFILEPARAM
� TAU call: TAU_PROFILE_PARAM1L (value, “name”)
� Simple example:

void foo(long input) {

TAU_PROFILE("foo", "", TAU_DEFAULT);

TAU_PROFILE_PARAM1L(input, "input");

... }

TAU Performance SystemACTS Workshop 2007 53

Workload Characterization

� 5 seconds spent in function “foo” becomes
� 2 seconds for “foo [<input> = <25>]”
� 1 seconds for “foo [<input> = <5>]”
� …

� Currently used in MPI wrapper library
� Allows for partitioning of time spent in MPI routines

based on parameters (message size, message tag,
destination node)

� Can be extrapolated to infer specifics about the MPI
subsystem and system as a whole

TAU Performance SystemACTS Workshop 2007 54

Workload Characterization

� Simple example, send/receive squared message sizes (0-32MB)
#include <stdio.h>
#include <mpi.h>
int buffer[8*1024*1024];

int main(int argc, char **argv) {
int rank, size, i, j;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
for (i=0;i<1000;i++)
for (j=1;j<=8*1024*1024;j*=2) {
if (rank == 0) {
MPI_Send(buffer,j,MPI_INT,1,42,MPI_COMM_WORLD);

} else {
MPI_Status status;
MPI_Recv(buffer,j,MPI_INT,0,42,MPI_COMM_WORLD,&status);

}
}

MPI_Finalize();
}

TAU Performance SystemACTS Workshop 2007 55

Workload Characterization

� Use tau_load.sh to instrument MPI routines (SGI Altix)
% icc mpi.c –lmpi

% mpirun –np 2 tau_load.sh –XrunTAU-icpc-mpi-pdt.so a.out

SGI MPI (SGI Altix) Intel MPI (SGI Altix)

TAU Performance SystemACTS Workshop 2007 56

Workload Characterization

� MPI Results (NAS Parallel Benchmark 3.1, LU class D
on 16 processors of SGI Altix)

TAU Performance SystemACTS Workshop 2007 57

Workload Characterization

� Two different message sizes (~3.3MB and ~4K)

TAU Performance SystemACTS Workshop 2007 58

Job Tracking: ParaProf profile browser

LU spent 0.162 seconds sending
messages of size 44880

It got 833.82 Mflops!

TAU Performance SystemACTS Workshop 2007 59

Memory Profiling in TAU
� Configuration option –PROFILEMEMORY

� Records global heap memory utilization for each function
� Takes one sample at beginning of each function and associates the

sample with function name
� Configuration option -PROFILEHEADROOM

� Records headroom (amount of free memory to grow) for each function
� Takes one sample at beginning of each function and associates it with

the callstack [TAU_CALLPATH_DEPTH env variable]
� Useful for debugging memory usage on IBM BG/L.

� Independent of instrumentation/measurement options selected
� No need to insert macros/calls in the source code
� User defined atomic events appear in profiles/traces

TAU Performance SystemACTS Workshop 2007 60

Memory Profiling in TAU (Atomic events)

Flash2 code profile (-PROFILEMEMORY) on IBM BlueGene/L [MPI rank 0]

TAU Performance SystemACTS Workshop 2007 61

Memory Profiling in TAU

� Instrumentation based observation of global heap memory (not per function)
� call TAU_TRACK_MEMORY()
� call TAU_TRACK_MEMORY_HEADROOM()

� Triggers one sample every 10 secs
� call TAU_TRACK_MEMORY_HERE()
� call TAU_TRACK_MEMORY_HEADROOM_HERE()

� Triggers sample at a specific location in source code
� call TAU_SET_INTERRUPT_INTERVAL(seconds)

� To set inter-interrupt interval for sampling
� call TAU_DISABLE_TRACKING_MEMORY()
� call TAU_DISABLE_TRACKING_MEMORY_HEADROOM()

� To turn off recording memory utilization
� call TAU_ENABLE_TRACKING_MEMORY()
� call TAU_ENABLE_TRACKING_MEMORY_HEADROOM()

� To re-enable tracking memory utilization

TAU Performance SystemACTS Workshop 2007 62

Detecting Memory Leaks in C/C++

� TAU wrapper library for malloc/realloc/free
� During instrumentation, specify

-optDetectMemoryLeaks option to TAU_COMPILER
% setenv TAU_OPTIONS ‘-optVerbose -optDetectMemoryLeaks’
% setenv TAU_MAKEFILE <taudir>/<arch>/lib/Makefile.tau-icpc-mpi-pdt...
% tau_cxx.sh foo.cpp ...

� Tracks each memory allocation/de-allocation in parsed files
� Correlates each memory event with the executing callstack
� At the end of execution, TAU detects memory leaks
� TAU reports leaks based on allocations and the executing callstack
� Set TAU_CALLPATH_DEPTH environment variable to limit callpath data

� default is 2
� Future work

� Support for C++ new/delete planned
� Support for Fortran 90/95 allocate/deallocate planned

TAU Performance SystemACTS Workshop 2007 63

Detecting Memory Leaks in C/C++

include /opt/tau/x86_64/lib/Makefile.tau-icpc-mpi-pdt

MYOPTS = -optVerbose -optDetectMemoryLeaks

CC= $(TAU_COMPILER) $(MYOPTS) $(TAU_CXX)

LIBS = -lm

OBJS = f1.o f2.o ...

TARGET= a.out

TARGET: $(OBJS)

$(F90) $(LDFLAGS) $(OBJS) -o $@ $(LIBS)

.c.o:

$(CC) $(CFLAGS) -c $< -o $@

TAU Performance SystemACTS Workshop 2007 64

Memory Leak Detection

TAU Performance SystemACTS Workshop 2007 65

Detecting Memory Leaks in Fortran

subroutine foo(x)

integer:: x

integer, allocatable :: A(:), B(:), C(:)

print *, "inside foo"

allocate(A(x), B(x), C(x))

deallocate(A, C)

print *, "exiting foo"

end subroutine foo

program main

call foo(5)

end program main

TAU Performance SystemACTS Workshop 2007 66

Detecting Memory Leaks in Fortran

USER EVENTS Profile :NODE 0, CONTEXT 0, THREAD 0

NumSamples MaxValue MinValue MeanValue Std. Dev. Event Name

1 5 5 5 0 MEMORY LEAK! malloc size <file=simple.f, variable=B, line=6> : MAIN =>
FOO

1 5 5 5 0 free size <file=simple.f, variable=A, line=7>
1 5 5 5 0 free size <file=simple.f, variable=A, line=7> : MAIN => FOO
1 5 5 5 0 free size <file=simple.f, variable=C, line=7>
1 5 5 5 0 free size <file=simple.f, variable=C, line=7> : MAIN => FOO
1 5 5 5 0 malloc size <file=simple.f, variable=A, line=6>
1 5 5 5 0 malloc size <file=simple.f, variable=A, line=6> : MAIN => FOO
1 5 5 5 0 malloc size <file=simple.f, variable=B, line=6>
1 5 5 5 0 malloc size <file=simple.f, variable=B, line=6> : MAIN => FOO
1 5 5 5 0 malloc size <file=simple.f, variable=C, line=6>
1 5 5 5 0 malloc size <file=simple.f, variable=C, line=6> : MAIN => FOO

TAU Performance SystemACTS Workshop 2007 67

TAU_SETUP: A GUI for Installing TAU

TAU Performance SystemACTS Workshop 2007 68

Jumpshot
� http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm
� Developed at Argonne National Laboratory as part of the MPICH

project
� Rusty Lusk, PI

� Also works with other MPI implementations
� Jumpshot is bundled with the TAU package

� Java-based tracefile visualization tool for postmortem performance
analysis of MPI programs

� Latest version is Jumpshot-4 for SLOG-2 format
� Scalable level of detail support
� Timeline and histogram views
� Scrolling and zooming
� Search/scan facility

TAU Performance SystemACTS Workshop 2007 69

Jumpshot

TAU Performance SystemACTS Workshop 2007 70

Tracing: Using TAU and Jumpshot
� Configure TAU with -TRACE option:

% configure –TRACE –otf=<dir>
-MULTIPLECOUNTERS –papi=<dir> -mpi
–pdt=dir …

� Set environment variables:
% setenv TRACEDIR /p/gm1/<login>/traces

% setenv COUNTER1 GET_TIME_OF_DAY (reqd)

% setenv COUNTER2 PAPI_FP_INS

% setenv COUNTER3 PAPI_TOT_CYC …

� Execute application and analyze the traces:
% mpirun -np 32 ./a.out [args]

% tau_treemerge.pl

% tau2slog2 tau.trc tau.edf –o app.slog2

% jumpshot app.slog2

TAU Performance SystemACTS Workshop 2007 71

Performance Analysis and Visualization
� Analysis of parallel profile and trace measurement
� Parallel profile analysis

� ParaProf: parallel profile analysis and presentation
� ParaVis: parallel performance visualization package
� Profile generation from trace data (tau2profile)

� Performance data management framework (PerfDMF)
� Parallel trace analysis

� Translation to VTF (V3.0), EPILOG, OTF formats
� Integration with VNG (Technical University of Dresden)

� Online parallel analysis and visualization
� Integration with CUBE browser (KOJAK, UTK, FZJ)

TAU Performance SystemACTS Workshop 2007 72

ParaProf Parallel Performance Profile Analysis

HPMToolkit

MpiP

TAU

Raw files

PerfDMF
managed
(database)

Metadata

Application

Experiment

Trial

TAU Performance SystemACTS Workshop 2007 73

ParaProf – Flat Profile (Miranda, BG/L)

8K processorsnode, context, thread

Miranda
� hydrodynamics
� Fortran + MPI
� LLNL

Run to 64K

TAU Performance SystemACTS Workshop 2007 74

Terminology – Example

� For routine “int main()”:
� Exclusive time

� 100-20-50-20=10 secs
� Inclusive time

� 100 secs
� Calls

� 1 call
� Subrs (no. of child routines

called)
� 3

� Inclusive time/call
� 100secs

int main()

{ /* takes 100 secs */

f1(); /* takes 20 secs */

f2(); /* takes 50 secs */

f1(); /* takes 20 secs */

/* other work */

}

/*

Time can be replaced by counts

from PAPI e.g., PAPI_FP_OPS. */

TAU Performance SystemACTS Workshop 2007 75

ParaProf – Stacked View (Miranda)

TAU Performance SystemACTS Workshop 2007 76

ParaProf – Callpath Profile (Flash)

Flash
� thermonuclear

flashes
� Fortran + MPI
� Argonne

TAU Performance SystemACTS Workshop 2007 77

Comparing Effects of MultiCore Processors

� AORSA2D on 4k cores
� PAPI resource stalls
� Blue is single node
� Red is dual core

TAU Performance SystemACTS Workshop 2007 78

Comparing FLOPS: MultiCore Processors

� AORSA2D on 4k cores
� Floating pt ins/second
� Blue is dual core
� Red is single node

TAU Performance SystemACTS Workshop 2007 79

ParaProf – Scalable Histogram View (Miranda)

8k processors

16k processors

TAU Performance SystemACTS Workshop 2007 80

ParaProf – 3D Full Profile (Miranda)

16k processors

TAU Performance SystemACTS Workshop 2007 81

ParaProf – 3D Scatterplot (S3D – XT4 only)
� Each point

is a “thread”
of execution

� A total of
four metrics
shown in
relation

� ParaVis 3D
profile
visualization
library
� JOGL

6400 cores

I/O takes less time on
one node (rank 0)

� Events (exclusive time metric)
� MPI_Barrier(), two loops
� write operation

TAU Performance SystemACTS Workshop 2007 82

6400 cores

S3D Scatter Plot: Visualizing Hybrid XT3+XT4

� Red nodes are XT4, blue are XT3

TAU Performance SystemACTS Workshop 2007 83

S3D: 6400 cores on XT3+XT4 System (Jaguar)

� Gap represents XT3 nodes

TAU Performance SystemACTS Workshop 2007 84

Visualizing S3D Profiles in ParaProf

� Gap represents XT3 nodes
� MPI_Wait takes less time, other routines take more time

TAU Performance SystemACTS Workshop 2007 85

Profile Snapshots in ParaProf

Initialization

Checkpointing

Finalization

� Profile snapshots are parallel profiles recorded at runtime
� Used to highlight profile changes during execution

TAU Performance SystemACTS Workshop 2007 86

Profile Snapshots in ParaProf
� Filter snapshots (only show main loop iterations)

TAU Performance SystemACTS Workshop 2007 87

Profile Snapshots in ParaProf
� Breakdown as a percentage

TAU Performance SystemACTS Workshop 2007 88

Snapshot replay in ParaProf

All windows dynamically update

TAU Performance SystemACTS Workshop 2007 89

Profile Snapshots in ParaProf
� Follow progression of various displays through time
� 3D scatter plot shown below

T = 0s T = 11s

TAU Performance SystemACTS Workshop 2007 90

Performance Data Management: Motivation
� Need for robust processing and storage of multiple profile

performance data sets
� Avoid developing independent data management solutions

� Waste of resources
� Incompatibility among analysis tools

� Goals:
� Foster multi-experiment performance evaluation
� Develop a common, reusable foundation of performance

data storage, access and sharing
� A core module in an analysis system, and/or as a central

repository of performance data

TAU Performance SystemACTS Workshop 2007 91

PerfDMF Approach
� Performance Data Management Framework
� Originally designed to address critical TAU requirements
� Broader goal is to provide an open, flexible framework to

support common data management tasks
� Extensible toolkit to promote integration and reuse across

available performance tools
� Supported profile formats:

TAU, CUBE, Dynaprof, HPC Toolkit, HPM Toolkit,
gprof, mpiP, psrun (PerfSuite), others in development

� Supported DBMS:
PostgreSQL, MySQL, Oracle, DB2, Derby/Cloudscape

TAU Performance SystemACTS Workshop 2007 92

PerfDMF Architecture

K. Huck, A. Malony, R. Bell, A. Morris, “Design and Implementation of
a Parallel Performance Data Management Framework,” ICPP 2005.

TAU Performance SystemACTS Workshop 2007 93

TAU Portal - www.paratools.com/tauportal

TAU Performance SystemACTS Workshop 2007 94

TAU Portal

TAU Performance SystemACTS Workshop 2007 95

TAU Portal - tau.nic.uoregon.edu

TAU Performance SystemACTS Workshop 2007 96

Using Performance Database (PerfDMF)
� Configure PerfDMF (Done by each user)

% perfdmf_configure
� Choose derby, PostgreSQL, MySQL, Oracle or DB2
� Hostname
� Username
� Password
� Say yes to downloading required drivers (we are not allowed to

distribute these)
� Stores parameters in your ~/.ParaProf/perfdmf.cfg file

� Configure PerfExplorer (Done by each user)
% perfexplorer_configure

� Execute PerfExplorer
% perfexplorer

TAU Performance SystemACTS Workshop 2007 97

Recent PerfDMF Development
� Integration of XML metadata for each profile

� Common Profile Attributes
� Thread/process specific Profile Attributes
� Automatic collection of runtime information
� Any other data the user wants to collect can be added

�Build information
� Job submission information

� Two methods for acquiring metadata:
�TAU_METADATA() call from application
�Optional XML file added when saving profile to PerfDMF

� TAU Metadata XML schema is simple, easy to generate
from scripting tools (no XML libraries required)

TAU Performance SystemACTS Workshop 2007 98

Performance Data Mining (Objectives)
� Conduct parallel performance analysis process

� In a systematic, collaborative and reusable manner
� Manage performance complexity
� Discover performance relationship and properties
� Automate process

� Multi-experiment performance analysis
� Large-scale performance data reduction

� Summarize characteristics of large processor runs
� Implement extensible analysis framework

� Abstraction / automation of data mining operations
� Interface to existing analysis and data mining tools

TAU Performance SystemACTS Workshop 2007 99

Performance Data Mining (PerfExplorer)
� Performance knowledge discovery framework

� Data mining analysis applied to parallel performance data
� comparative, clustering, correlation, dimension reduction, …

� Use the existing TAU infrastructure
�TAU performance profiles, PerfDMF

� Client-server based system architecture
� Technology integration

� Java API and toolkit for portability
� PerfDMF
� R-project/Omegahat, Octave/Matlab statistical analysis
� WEKA data mining package
� JFreeChart for visualization, vector output (EPS, SVG)

TAU Performance SystemACTS Workshop 2007 100

Performance Data Mining (PerfExplorer)

K. Huck and A. Malony, “PerfExplorer: A Performance Data
Mining Framework For Large-Scale Parallel Computing,” SC 2005.

TAU Performance SystemACTS Workshop 2007 101

PerfExplorer Analysis Methods
� Data summaries, distributions, scatterplots
� Clustering

� k-means
� Hierarchical

� Correlation analysis
� Dimension reduction

� PCA
� Random linear projection
� Thresholds

� Comparative analysis
� Data management views

TAU Performance SystemACTS Workshop 2007 102

PerfDMF and the TAU Portal
� Development of the TAU portal

� Common repository for collaborative data sharing
� Profile uploading, downloading, user management
� Paraprof, PerfExplorer can be launched from the portal

using Java Web Start (no TAU installation required)
� Portal URL

http://tau.nic.uoregon.edu

TAU Performance SystemACTS Workshop 2007 103

New automated metadata collection

Multiple PerfDMF DBs

TAU Performance SystemACTS Workshop 2007 104

PerfExplorer: Cross Experiment Analysis for S3D

TAU Performance SystemACTS Workshop 2007 105

PerfExplorer: S3D Total Runtime Breakdown

MPI_Wait

WRITE_
SAVEFILE

12,000
cores!

TAU Performance SystemACTS Workshop 2007 106

PerfExplorer - Cluster Analysis
� Performance data represented as vectors - each

dimension is the cumulative time for an event
� k-means: k random centers are selected and instances are

grouped with the "closest" (Euclidean) center
� New centers are calculated and the process repeated until

stabilization or max iterations
� Dimension reduction necessary for meaningful results
� Virtual topology, summaries constructed

TAU Performance SystemACTS Workshop 2007 107

PerfExplorer - Cluster Analysis (sPPM)

TAU Performance SystemACTS Workshop 2007 108

PerfExplorer - Cluster Analysis

� Four significant events automatically selected (from
16K processors)

� Clusters and correlations are visible

TAU Performance SystemACTS Workshop 2007 109

PerfExplorer - Correlation Analysis (Flash)
� Describes strength and direction of a linear relationship

between two variables (events) in the data

TAU Performance SystemACTS Workshop 2007 110

PerfExplorer - Correlation Analysis (Flash)
�-0.995 indicates strong,

negative relationship
�As CALC_CUT_

BLOCK_CONTRIBUTI
ONS() increases in
execution time,
MPI_Barrier() decreases

TAU Performance SystemACTS Workshop 2007 111

PerfExplorer - Comparative Analysis
� Relative speedup, efficiency

� total runtime, by event, one event, by phase
� Breakdown of total runtime
� Group fraction of total runtime
� Correlating events to total runtime
� Timesteps per second
� Performance Evaluation Research Center (PERC)

� PERC tools study (led by ORNL, Pat Worley)
� In-depth performance analysis of select applications
� Evaluation performance analysis requirements
� Test tool functionality and ease of use

TAU Performance SystemACTS Workshop 2007 112

PerfExplorer - Interface

Select experiments
and trials of interest

Data organized in application,
experiment, trial structure
(will allow arbitrary in future)

Experiment
metadata

TAU Performance SystemACTS Workshop 2007 113

PerfExplorer - Interface

Select analysis

TAU Performance SystemACTS Workshop 2007 114

PerfExplorer - Relative Efficiency Plots

TAU Performance SystemACTS Workshop 2007 115

PerfExplorer - Relative Efficiency by Routine

TAU Performance SystemACTS Workshop 2007 116

PerfExplorer - Relative Speedup

TAU Performance SystemACTS Workshop 2007 117

PerfExplorer - Timesteps Per Second

TAU Performance SystemACTS Workshop 2007 118

B3-gtc

PerfExplorer - Timesteps per Second for GYRO

� Cray X1 is the fastest to
solution
� In all 3 tests

� FFT (nl2) improves time
� B3-gtc only

� TeraGrid faster than p690
� For B1-std?

� All plots generated
automatically

B1-std

B2-cy B3-gtc

TeraGrid

TAU Performance SystemACTS Workshop 2007 119

PerfExplorer - Relative Efficiency (B1-std)
� By experiment (B1-std)

� Total runtime (Cheetah (red))
� By event for one experiment

� Coll_tr (blue) is significant
� By experiment for one event

� Shows how Coll_tr behaves for all
experiments

16 processor
base case

Cheetah Coll_tr

TAU Performance SystemACTS Workshop 2007 120

PerfExplorer - Runtime Breakdown

TAU Performance SystemACTS Workshop 2007 121

Group % of Total

Communication grows to
over 60% of total runtime
Communication grows to
over 60% of total runtime

At each timestep, 230 messages
between

all boundaries: MPI_Bcast = 26%,
MPI_Wait = 25% of total for N=1024

At each timestep, 230 messages
between

all boundaries: MPI_Bcast = 26%,
MPI_Wait = 25% of total for N=1024

TAU Performance SystemACTS Workshop 2007 122

TAU Performance System Status
� Computing platforms (selected)

� IBM SP/pSeries/BGL/Cell PPE, SGI Altix/Origin, Cray T3E/SV-
1/X1/XT3, HP (Compaq) SC (Tru64), Sun, Linux clusters (IA-
32/64, Alpha, PPC, PA-RISC, Power, Opteron), Apple (G4/5, OS
X), Hitachi SR8000, NEC SX Series, Windows …

� Programming languages
� C, C++, Fortran 77/90/95, HPF, Java, Python

� Thread libraries (selected)
� pthreads, OpenMP, SGI sproc, Java,Windows, Charm++

� Compilers (selected)
� Intel, PGI, GNU, Fujitsu, Sun, PathScale, SGI, Cray, IBM, HP,

NEC, Absoft, Lahey, Nagware, ...

TAU Performance SystemACTS Workshop 2007 123

Vampir, VNG, and OTF
� Commercial trace based tools developed at ZiH, T.U. Dresden

� Wolfgang Nagel, Holger Brunst and others…
� Vampir Trace Visualizer (aka Intel ® Trace Analyzer v4.0)

� Sequential program
� Vampir Next Generation (VNG)

� Client (vng) runs on a desktop, server (vngd) on a cluster
� Parallel trace analysis
� Orders of magnitude bigger traces (more memory)
� State of the art in parallel trace visualization

� Open Trace Format (OTF)
� Hierarchical trace format, efficient streams based parallel access with VNGD
� Replacement for proprietary formats such as STF
� Tracing library available with a evaluation license now. Open source package at

SC’06.
http://www.vampir-ng.de

TAU Performance SystemACTS Workshop 2007 124

Vampir Next Generation (VNG) Architecture

Merged
Traces

Analysis Server

Classic Analysis:

� monolithic

� sequential

Worker 1

Worker 2

Worker m

Master

Trace 1
Trace 2

Trace 3
Trace N

File System

InternetInternet

Parallel Program
Monitor
System

Event Streams

Visualization Client

Segment
Indicator

768 Processes
Thumbnail

Timeline with 16
visible Traces

Process
Parallel

I/O
Message
Passing

TAU Performance SystemACTS Workshop 2007 125

VNG Parallel Analysis Server

Worker 1

Worker 2

Worker m

Master

Worker

Session Thread

Analysis Module

Event Databases

Message Passing

Trace Format Driver

Master

Session Thread

Analysis Merger

Endian Conversion

Message Passing

Socket Communication

Visualization
Client

M Worker

N Session Threads N Session Threads

Traces

TAU Performance SystemACTS Workshop 2007 126

Scalability of VNG [Holger Brunst, WAPA 2005]

� sPPM
� 16 CPUs
� 200 MB

0,00
2,00
4,00
6,00
8,00

10,00
12,00
14,00
16,00
18,00

0 10 20 30 40

Number of Workers

S
pe

ed
up

Com. Matrix
Timeline
Summary Profile
Process Profile
Stack Tree
LoadTime

Number of Workers 1 2 4 8 16 32
Load Time 47,33 22,48 10,80 5,43 3,01 3,16
Timeline 0,10 0,09 0,06 0,08 0,09 0,09
Summary Profile 1,59 0,87 0,47 0,30 0,28 0,25
Process Profile 1,32 0,70 0,38 0,26 0,17 0,17
Com. Matrix 0,06 0,07 0,08 0,09 0,09 0,09
Stack Tree 2,57 1,39 0,70 0,44 0,25 0,25

TAU Performance SystemACTS Workshop 2007 127

VNG Analysis Server Architecture

� Implementation using MPI and Pthreads
� Client/server approach
� MPI and pthreads are available on most platforms
� Workload and data distribution among “physical” MPI

processes
� Support of multiple visualization clients by using virtual

sessions handled by individual threads
� Sessions are scheduled as threads

TAU Performance SystemACTS Workshop 2007 128

TAU Tracing Enhancements

� Configure TAU with -TRACE –otf=<dir> option

% configure –TRACE –otf=<dir> …
Generates tau_merge, tau2vtf, tau2otf tools in <tau>/<arch>/bin

directory
% tau_f90.sh app.f90 –o app

� Instrument and execute application
% mpirun -np 4 app

� Merge and convert trace files to OTF format

% tau_treemerge.pl
% tau2otf tau.trc tau.edf app.otf [-z][–n <nstreams>]
% vampir app.otf

OR use VNG to analyze OTF/VTF trace files

TAU Performance SystemACTS Workshop 2007 129

Environment Variables

� Configure TAU with -TRACE –otf=<dir> option
% configure –TRACE –otf=<dir>

-MULTIPLECOUNTERS –papi=<dir> -mpi
–pdt=dir …

� Set environment variables
% setenv TRACEDIR /p/gm1/<login>/traces

% setenv COUNTER1 GET_TIME_OF_DAY (reqd)
% setenv COUNTER2 PAPI_FP_INS

% setenv COUNTER3 PAPI_TOT_CYC …

� Execute application
% mpirun -np 32 ./a.out [args]

% tau_treemerge.pl

% tau2otf tau.trc tau.edf app.otf -z

TAU Performance SystemACTS Workshop 2007 130

Using VampirTrace to generate OTF traces

� Configure TAU with -TRACE –vampirtrace=<dir> option
% configure –TRACE -vampirtrace=<dir> –papi=<dir>

-mpi
–pdt=dir …

� Set environment variables
% setenv VT_METRICS PAPI_FP_OPS:PAPI_TOT_CYC

� Execute application
% mpirun -np 20 ./a.out [args]

On IBM AIX, running the application will create
a.otf after unifying the events

Unifies the descriptors to generate a.otf

% vampir a.otf &

TAU Performance SystemACTS Workshop 2007 131

Using Vampir Next Generation (VNG v1.4)

TAU Performance SystemACTS Workshop 2007 132

VNG Timeline Display

TAU Performance SystemACTS Workshop 2007 133

VNG Calltree Display

TAU Performance SystemACTS Workshop 2007 134

VNG Timeline Zoomed In

TAU Performance SystemACTS Workshop 2007 135

VNG Grouping of Interprocess Communications

TAU Performance SystemACTS Workshop 2007 136

VNG Process Timeline with PAPI Counters

TAU Performance SystemACTS Workshop 2007 137

OTF/VNG Support for Counters

TAU Performance SystemACTS Workshop 2007 138

VNG Communication Matrix Display

TAU Performance SystemACTS Workshop 2007 139

VNG Message Profile

TAU Performance SystemACTS Workshop 2007 140

VNG Process Activity Chart

TAU Performance SystemACTS Workshop 2007 141

VNG Preferences

TAU Performance SystemACTS Workshop 2007 142

TAU Plug-Ins for Eclipse: Motivation
� High performance software development environments

� Tools may be complicated to use
� Interfaces and mechanisms differ between platforms / OS

� Integrated development environments
� Consistent development environment
� Numerous enhancements to development process
� Standard in industrial software development

� Integrated performance analysis
� Tools limited to single platform or programming language
� Rarely compatible with 3rd party analysis tools
� Little or no support for parallel projects

TAU Performance SystemACTS Workshop 2007 143

Adding TAU to Eclipse
� Provide an interface for configuring TAU’s automatic

instrumentation within Eclipse’s build system
� Manage runtime configuration settings and environment

variables for execution of TAU instrumented programs

C/C++/Fortran
Project in Eclipse

Add or modify
an Eclipse build

configuration w/ TAU

Temporary copy
of instrumented code

Compilation/linking
with TAU libraries

TAU instrumented
libraries

Program
execution

Performance
data

Program
output

TAU Performance SystemACTS Workshop 2007 144

TAU Eclipse Plug-In Features
� Performance data collection

� Graphical selection of TAU stub makefiles and compiler options
� Automatic instrumentation, compilation and execution of target C, C++ or

Fortran projects
� Selective instrumentation via source editor and source outline views
� Full integration with the Parallel Tools Platform (PTP) parallel launch

system for performance data collection from parallel jobs launched within
Eclipse

� Performance data management
� Automatically place profile output in a PerfDMF database or upload to

TAU-Portal
� Launch ParaProf on profile data collected in Eclipse, with performance

counters linked back to the Eclipse source editor

TAU Performance SystemACTS Workshop 2007 145

TAU Eclipse Plug-In Features

PerfDMF

TAU Performance SystemACTS Workshop 2007 146

Choosing PAPI Counters with TAU’s in Eclipse

TAU Performance SystemACTS Workshop 2007 147

Future Plug-In Development
� Integration of additional TAU components

� Automatic selective instrumentation based on previous
experimental results

� Trace format conversion from within Eclipse
� Trace and profile visualization within Eclipse
� Scalability testing interface
� Additional user interface enhancements

TAU Performance SystemACTS Workshop 2007 148

KTAU Project
� Trend toward Extremely Large Scales

� System-level influences are increasingly dominant performance bottleneck
contributors

� Application sensitivity at scale to the system (e.g., OS noise)
� Complex I/O path and subsystems another example
� Isolating system-level factors non-trivial

� OS Kernel instrumentation and measurement is important to understanding
system-level influences

� But can we closely correlate observed application and OS performance?
� KTAU / TAU (Part of the ANL/UO ZeptoOS Project)

� Integrated methodology and framework to measure whole-system
performance

TAU Performance SystemACTS Workshop 2007 149

Applying KTAU+TAU
� How does real OS-noise affect real applications on target

platforms?
� Requires a tightly coupled performance measurement &

analysis approach provided by KTAU+TAU
� Provides an estimate of application slowdown due to Noise

(and in particular, different noise-components - IRQ,
scheduling, etc)

� Can empower both application and the middleware and OS
communities.

� A. Nataraj, A. Morris, A. Malony, M. Sottile, P. Beckman,
“The Ghost in the Machine : Observing the Effects of Kernel
Operation on Parallel Application Performance”, SC’07.

� Measuring and analyzing complex, multi-component I/O
subsystems in systems like BG(L/P) (work in progress).

TAU Performance SystemACTS Workshop 2007 150

KTAU System Architecture

A. Nataraj, A. Malony, S. Shende, and A. Morris, “Kernel-level Measurement for
Integrated Performance Views: the KTAU Project,” Cluster 2006, distinguished paper.

TAU Performance SystemACTS Workshop 2007 151

TAU Performance System Status
� Computing platforms (selected)

� IBM SP/pSeries/BGL, SGI Altix/Origin, Cray T3E/SV-
1/X1/XT3, HP (Compaq) SC (Tru64), Sun, Linux clusters
(IA-32/64, Alpha, PPC, PA-RISC, Power, Opteron),
Apple (G4/5, OS X), Hitachi SR8000, NEC SX-5/6,
SiCortex, Windows …

� Programming languages
� C, C++, Fortran 77/90/95, HPF, Java, Python

� Thread libraries (selected)
� pthreads, OpenMP, SGI sproc, Java,Windows, Charm++

� Compilers (selected)
� Intel, , GNU, Fujitsu, Sun, PathScale, SGI, Cray, IBM,

HP, NEC, Absoft, Lahey, Nagware

TAU Performance SystemACTS Workshop 2007 152

Concluding Discussion
� Performance tools must be used effectively
� More intelligent performance systems for productive use

� Evolve to application-specific performance technology
� Deal with scale by “full range” performance exploration
� Autonomic and integrated tools
� Knowledge-based and knowledge-driven process

� Performance observation methods do not necessarily
need to change in a fundamental sense
� More automatically controlled and efficiently use

� Develop next-generation tools and deliver to community
� Open source with support by ParaTools, Inc.
� http://www.cs.uoregon.edu/research/tau

TAU Performance SystemACTS Workshop 2007 153

Labs!

Lab: TAU

TAU Performance SystemACTS Workshop 2007 154

Lab Instructions

Get workshop.tar.gz on Seaborg.nersc.gov using:

% cp /usr/common/acts/TAU/workshop.tar.gz

Or

% wget http://www.cs.uoregon.edu/research/tau/
workshop.tar.gz

% gtar zxf workshop.tar.gz

and follow the instructions in the README file.

TAU Performance SystemACTS Workshop 2007 155

Lab Instructions

To profile a code:

1. Load TAU module:
% module load tau

2. Change the compiler name to tau_cxx.sh, tau_f90.sh, tau_cc.sh:
F90 = tau_f90.sh

3. Choose TAU stub makefile
% setenv TAU_MAKEFILE
/usr/common/acts/TAU/2.16.5/rs6000/lib/Makefile.tau-[options]

4. If stub makefile has –multiplecounters in its name, set
COUNTER[1-<n>] environment variables:
% setenv COUNTER1 GET_TIME_OF_DAY
% setenv COUNTER2 PAPI_FP_INS
% setenv COUNTER3 PAPI_TOT_CYC …

5. Set TAU_THROTTLE environment variable to throttle
instrumentation:
% setenv TAU_THROTTLE 1

6. Build and run workshop examples, then run pprof/paraprof

TAU Performance SystemACTS Workshop 2007 156

Support Acknowledgements
� US Department of Energy (DOE)

� Office of Science
� MICS, Argonne National Lab

� ASC/NNSA
� University of Utah ASC/NNSA Level 1
� ASC/NNSA, Lawrence Livermore National Lab

� US Department of Defense (DoD)
� NSF Software and Tools for High-End Computing
� Research Centre Juelich
� TU Dresden
� Los Alamos National Laboratory
� ParaTools, Inc.

